library(tidyverse)
library(metafor)
library(ggthemes)
library(cowplot)
library(scales)
library(broom)
library(dplyr)
library(readxl)
library(gsheet)
library(janitor)
library(cowplot)
rust <- gsheet2tbl("https://docs.google.com/spreadsheets/d/1Xx_gK6ERLLhQGIrOPB_ZYs9LoHTmsv030s30Dc_TPzg/edit#gid=287066174", sheetid = "2015-2020")
rust %>%
group_by(study)
length(unique(rust$study))
## [1] 177
rust1 <- rust %>%
group_by(study, year, location, state, n_spray, brand_name) %>%
summarise(mean_sev = mean(sev),
mean_yld = mean(yld))
## `summarise()` regrouping output by 'study', 'year', 'location', 'state', 'n_spray' (override with `.groups` argument)
rust_sev <- rust %>%
group_by(study, year) %>%
select(brand_name, rep, sev) %>%
group_by(study, year) %>%
do(tidy(aov(.$sev ~ .$brand_name + factor(.$rep)))) %>%
filter(term == "Residuals") %>%
select(1,2,6) %>%
set_names(c("study", "year", "v_sev"))
## Adding missing grouping variables: `study`, `year`
rust_yld <- rust %>%
filter(yld>0) %>%
group_by(study, year) %>%
select(brand_name, rep, yld) %>%
group_by(study, year) %>%
do(tidy(aov(.$yld ~ .$brand_name + factor(.$rep)))) %>%
filter(term == "Residuals") %>%
select(1,2,6) %>%
set_names(c("study", "year", "v_yld"))
## Adding missing grouping variables: `study`, `year`
qmr = left_join(rust_sev, rust_yld)
## Joining, by = c("study", "year")
rust_trial = full_join(rust1, qmr)
## Joining, by = c("study", "year")
rust_trial
library(janitor)
a1 = rust_trial %>%
group_by(study,year) %>%
summarise() %>%
tabyl(year)
## `summarise()` regrouping output by 'study' (override with `.groups` argument)
a1
library(janitor)
a1 = rust_trial %>%
group_by(study,year,n_spray) %>%
summarise() %>%
tabyl(n_spray, year)
## `summarise()` regrouping output by 'study', 'year' (override with `.groups` argument)
a1
rust_trial %>%
group_by(study,location) %>%
summarise() %>%
tabyl(location)
## `summarise()` regrouping output by 'study' (override with `.groups` argument)
rust %>%
group_by(location)
length(unique(rust$location))
## [1] 46
a2 = rust_trial %>%
group_by(study,state) %>%
summarise() %>%
tabyl(state)
## `summarise()` regrouping output by 'study' (override with `.groups` argument)
a2
a3 = rust_trial %>%
group_by(study,brand_name) %>%
summarise() %>%
tabyl(brand_name) %>%
filter(n>100)
## `summarise()` regrouping output by 'study' (override with `.groups` argument)
a3
rust_trial %>%
tabyl(brand_name,year)
rust_trial %>%
tabyl(brand_name,n_spray)
rust3 <- rust_trial %>%
filter(brand_name %in% c("CHECK", "Aproach Prima", "Ativum", "Elatus", "FOX", "FOX Xpro", "Horos", "SphereMax", "Vessarya"))
rust3 %>%
tabyl(brand_name, year)
# Renaming the treatments
library(plyr)
## ------------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------------------------------------------------------------------------------
##
## Attaching package: 'plyr'
## The following object is masked from 'package:here':
##
## here
## The following object is masked from 'package:ggpubr':
##
## mutate
## The following objects are masked from 'package:dplyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
## The following object is masked from 'package:purrr':
##
## compact
rust3$brand_name <- revalue(rust3$brand_name, c("CHECK" = "AACHECK"))
rust3$brand_name <- revalue(rust3$brand_name, c("FOX" = "TFLX + PROT"))
rust3$brand_name <- revalue(rust3$brand_name, c("FOX Xpro" = "BIXF + TFLX + PROT"))
rust3$brand_name <- revalue(rust3$brand_name, c("Horos" = "PICO + TEBU"))
rust3$brand_name <- revalue(rust3$brand_name, c("SphereMax" = "TFLX + CYPR"))
rust3$brand_name <- revalue(rust3$brand_name, c("Ativum" = "PYRA + EPOX + FLUX"))
rust3$brand_name <- revalue(rust3$brand_name, c("Elatus" = "AZOX + BENZ"))
rust3$brand_name <- revalue(rust3$brand_name, c("Vessarya" = "PICO + BENZ"))
rust3$brand_name <- revalue(rust3$brand_name, c("Aproach Prima" = "PICO + CYPR"))
detach("package:plyr", unload = TRUE)
# these two columns will be used as moderator variables later
sbr_check = rust3 %>%
ungroup() %>%
filter(brand_name == "AACHECK") %>%
mutate(check = brand_name, sev_check = mean_sev, v_sev_check = v_sev, yld_check = mean_yld, v_yld_check = v_yld ) %>%
select(study, yld_check, v_yld_check, sev_check, v_sev_check)
sbr_data = rust3 %>%
full_join(sbr_check)
## Joining, by = "study"
rust_sev <- sbr_data %>%
filter(mean_sev != "NA") %>%
filter(mean_sev>0)
hist(rust_sev$mean_sev)
# create the log of the sev variable
rust_sev <- rust_sev %>%
mutate(log_sev = log(mean_sev))
hist(rust_sev$log_sev)
# create the sampling variance for the log of sev
rust_sev$vi_sev <- with(rust_sev, v_sev / (4 * mean_sev^2))
summary(rust_sev$vi_sev)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00000 0.00093 0.00307 0.24779 0.01193 149.30794
rust_sev <- rust_sev %>%
group_by(study) %>%
mutate(n2 = n()) %>%
filter(n2 != 1)
rust_sev1 = rust_sev %>%
group_by(study) %>%
summarise(brand_name1=paste(brand_name, collapse=';'))
## `summarise()` ungrouping output (override with `.groups` argument)
rust_sev1 %>%
tabyl(brand_name1)
Ten different designs (here design refers to the set of treatments in the trial) were found in the trials reporting SBR severity.
design1 = rust_sev %>%
group_by(study) %>%
filter(brand_name %in% c("PICO + CYPR", "PYRA + EPOX + FLUX", "AACHECK", "AZOX + BENZ", "TFLX + PROT", "BIXF + TFLX + PROT", "PICO + TEBU", "TFLX + CYPR", "PICO + BENZ")) %>%
mutate(n3 = n()) %>%
mutate(design = rep(1, length(brand_name))) %>%
filter(n2 == 9) %>%
filter(n3 == 9)
design1
design2 = rust_sev %>%
group_by(study) %>%
filter(brand_name %in% c("PICO + CYPR", "AACHECK", "AZOX + BENZ", "TFLX + PROT", "BIXF + TFLX + PROT", "PICO + TEBU", "TFLX + CYPR", "PICO + BENZ")) %>%
mutate(n3 = n()) %>%
mutate(design = rep(2, length(brand_name))) %>%
filter(n2 == 8) %>%
filter(n3 == 8)
design2
design3 = rust_sev %>%
group_by(study) %>%
filter(brand_name %in% c("PICO + CYPR", "PYRA + EPOX + FLUX", "AACHECK", "AZOX + BENZ", "TFLX + PROT", "BIXF + TFLX + PROT", "TFLX + CYPR", "PICO + BENZ")) %>%
mutate(n3 = n()) %>%
mutate(design = rep(3, length(brand_name))) %>%
filter(n2 == 8) %>%
filter(n3 == 8)
design3
design4 = rust_sev %>%
group_by(study) %>%
filter(brand_name %in% c("PICO + CYPR", "PYRA + EPOX + FLUX", "AACHECK", "TFLX + PROT", "BIXF + TFLX + PROT", "PICO + TEBU", "TFLX + CYPR", "PICO + BENZ")) %>%
mutate(n3 = n()) %>%
mutate(design = rep(4, length(brand_name))) %>%
filter(n2 == 8) %>%
filter(n3 == 8)
design4
design5 = rust_sev %>%
group_by(study) %>%
filter(brand_name %in% c("PICO + CYPR", "PYRA + EPOX + FLUX", "AACHECK", "AZOX + BENZ", "TFLX + PROT", "PICO + TEBU", "TFLX + CYPR", "PICO + BENZ")) %>%
mutate(n3 = n()) %>%
mutate(design = rep(5, length(brand_name))) %>%
filter(n2 == 8) %>%
filter(n3 == 8)
design5
design6 = rust_sev %>%
group_by(study) %>%
filter(brand_name %in% c("PICO + CYPR", "PYRA + EPOX + FLUX", "AACHECK", "BIXF + TFLX + PROT", "PICO + TEBU", "TFLX + CYPR", "PICO + BENZ")) %>%
mutate(n3 = n()) %>%
mutate(design = rep(6, length(brand_name))) %>%
filter(n2 == 7) %>%
filter(n3 == 7)
design6
design7 = rust_sev %>%
group_by(study) %>%
filter(brand_name %in% c("PICO + CYPR", "AACHECK", "BIXF + TFLX + PROT", "PICO + TEBU", "TFLX + CYPR", "PICO + BENZ")) %>%
mutate(n3 = n()) %>%
mutate(design = rep(7, length(brand_name))) %>%
filter(n2 == 6) %>%
filter(n3 == 6)
design7
design8 = rust_sev %>%
group_by(study) %>%
filter(brand_name %in% c("PICO + CYPR", "AACHECK", "AZOX + BENZ", "TFLX + PROT", "PICO + TEBU", "TFLX + CYPR")) %>%
mutate(n3 = n()) %>%
mutate(design = rep(8, length(brand_name))) %>%
filter(n2 == 6) %>%
filter(n3 == 6)
design8
design9 = rust_sev %>%
group_by(study) %>%
filter(brand_name %in% c("PICO + CYPR", "AACHECK", "AZOX + BENZ", "TFLX + PROT", "PICO + TEBU")) %>%
mutate(n3 = n()) %>%
mutate(design = rep(9, length(brand_name))) %>%
filter(n2 == 5) %>%
filter(n3 == 5)
design9
design10 = rust_sev %>%
group_by(study) %>%
filter(brand_name %in% c("PICO + CYPR", "AACHECK", "AZOX + BENZ", "PICO + TEBU")) %>%
mutate(n3 = n()) %>%
mutate(design = rep(10, length(brand_name))) %>%
filter(n2 == 4) %>%
filter(n3 == 4)
design10
sbr_sev_design = rbind(design1, design2, design3, design4, design5, design6, design7, design8, design9, design10)
sbr_sev_design %>%
group_by(study,design) %>%
summarize() %>%
tabyl(design)
## `summarise()` regrouping output by 'study' (override with `.groups` argument)
library(readr)
write_csv(sbr_sev_design, "data/dat-sev.csv")
library(knitr)
library(tidyverse)
rust_sev <- read_csv("data/dat-sev.csv")
##
## -- Column specification --------------------------------------------------------
## cols(
## study = col_double(),
## year = col_double(),
## location = col_character(),
## state = col_character(),
## n_spray = col_double(),
## brand_name = col_character(),
## mean_sev = col_double(),
## mean_yld = col_double(),
## v_sev = col_double(),
## v_yld = col_double(),
## yld_check = col_double(),
## v_yld_check = col_double(),
## sev_check = col_double(),
## v_sev_check = col_double(),
## log_sev = col_double(),
## vi_sev = col_double(),
## n2 = col_double(),
## n3 = col_double(),
## design = col_double()
## )
rust_sev %>%
group_by(study)
length(unique(rust_sev$study))
## [1] 177
rust_sev %>%
tabyl(state)
length(unique(rust_sev$study))
## [1] 177
summary(rust_sev$sev_check)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.125 56.825 72.500 69.263 85.000 100.000
median = rust_sev %>%
group_by(study, year, brand_name) %>%
filter(brand_name == "AACHECK") %>%
summarise(median = median(sev_check)) %>%
filter(median>60)
## `summarise()` regrouping output by 'study', 'year' (override with `.groups` argument)
length(unique(median$study))
## [1] 127
rust_sev %>%
tabyl(brand_name, year)
rust_sev %>%
tabyl(brand_name)
rust_yld <- sbr_data %>%
filter(mean_yld != "NA")
# Sampling variance for yield
rust_yld$vi_yld <- with(rust_yld, v_yld/4) # multivariate approach
rust_yld <- rust_yld %>%
group_by(study) %>%
mutate(n2 = n()) %>%
filter(n2 != 1)
rust_yld1 = rust_yld %>%
group_by(study) %>%
summarise(brand_name1=paste(brand_name, collapse=';'))
## `summarise()` ungrouping output (override with `.groups` argument)
rust_yld1 %>%
tabyl(brand_name1)
Ten different designs (here design refers to the set of treatments in the trial) were found in the trials reporting soybean yield.
design1 = rust_yld %>%
group_by(study) %>%
filter(brand_name %in% c("PICO + CYPR", "PYRA + EPOX + FLUX", "AACHECK", "AZOX + BENZ", "TFLX + PROT", "BIXF + TFLX + PROT", "PICO + TEBU", "TFLX + CYPR", "PICO + BENZ")) %>%
mutate(n3 = n()) %>%
mutate(design = rep(1, length(brand_name))) %>%
filter(n2 == 9) %>%
filter(n3 == 9)
design1
design2 = rust_yld %>%
group_by(study) %>%
filter(brand_name %in% c("PICO + CYPR", "AACHECK", "AZOX + BENZ", "TFLX + PROT", "BIXF + TFLX + PROT", "PICO + TEBU", "TFLX + CYPR", "PICO + BENZ")) %>%
mutate(n3 = n()) %>%
mutate(design = rep(2, length(brand_name))) %>%
filter(n2 == 8) %>%
filter(n3 == 8)
design2
design3 = rust_yld %>%
group_by(study) %>%
filter(brand_name %in% c("PICO + CYPR", "PYRA + EPOX + FLUX", "AACHECK", "AZOX + BENZ", "TFLX + PROT", "BIXF + TFLX + PROT", "TFLX + CYPR", "PICO + BENZ")) %>%
mutate(n3 = n()) %>%
mutate(design = rep(3, length(brand_name))) %>%
filter(n2 == 8) %>%
filter(n3 == 8)
design3
design4 = rust_yld %>%
group_by(study) %>%
filter(brand_name %in% c("PICO + CYPR", "PYRA + EPOX + FLUX", "AACHECK", "TFLX + PROT", "BIXF + TFLX + PROT", "PICO + TEBU", "TFLX + CYPR", "PICO + BENZ")) %>%
mutate(n3 = n()) %>%
mutate(design = rep(4, length(brand_name))) %>%
filter(n2 == 8) %>%
filter(n3 == 8)
design4
design5 = rust_yld %>%
group_by(study) %>%
filter(brand_name %in% c("PICO + CYPR", "PYRA + EPOX + FLUX", "AACHECK", "AZOX + BENZ", "TFLX + PROT", "PICO + TEBU", "TFLX + CYPR", "PICO + BENZ")) %>%
mutate(n3 = n()) %>%
mutate(design = rep(5, length(brand_name))) %>%
filter(n2 == 8) %>%
filter(n3 == 8)
design5
design6 = rust_yld %>%
group_by(study) %>%
filter(brand_name %in% c("PICO + CYPR", "PYRA + EPOX + FLUX", "AACHECK", "BIXF + TFLX + PROT", "PICO + TEBU", "TFLX + CYPR", "PICO + BENZ")) %>%
mutate(n3 = n()) %>%
mutate(design = rep(6, length(brand_name))) %>%
filter(n2 == 7) %>%
filter(n3 == 7)
design6
design7 = rust_yld %>%
group_by(study) %>%
filter(brand_name %in% c("PICO + CYPR", "AACHECK", "BIXF + TFLX + PROT", "PICO + TEBU", "TFLX + CYPR", "PICO + BENZ")) %>%
mutate(n3 = n()) %>%
mutate(design = rep(7, length(brand_name))) %>%
filter(n2 == 6) %>%
filter(n3 == 6)
design7
design8 = rust_yld %>%
group_by(study) %>%
filter(brand_name %in% c("PICO + CYPR", "AACHECK", "AZOX + BENZ", "TFLX + PROT", "PICO + TEBU", "TFLX + CYPR")) %>%
mutate(n3 = n()) %>%
mutate(design = rep(8, length(brand_name))) %>%
filter(n2 == 6) %>%
filter(n3 == 6)
design8
design9 = rust_yld %>%
group_by(study) %>%
filter(brand_name %in% c("PICO + CYPR", "AACHECK", "AZOX + BENZ", "TFLX + PROT", "PICO + TEBU")) %>%
mutate(n3 = n()) %>%
mutate(design = rep(9, length(brand_name))) %>%
filter(n2 == 5) %>%
filter(n3 == 5)
design9
design10 = rust_yld %>%
group_by(study) %>%
filter(brand_name %in% c("PICO + CYPR", "PYRA + EPOX + FLUX", "AACHECK", "TFLX + PROT", "PICO + TEBU", "TFLX + CYPR", "PICO + BENZ")) %>%
mutate(n3 = n()) %>%
mutate(design = rep(10, length(brand_name))) %>%
filter(n2 == 7) %>%
filter(n3 == 7)
design10
sbr_yld_design = rbind(design1, design2, design3, design4, design5, design6, design7, design8, design9, design10)
sbr_yld_design %>%
group_by(study,design) %>%
summarize() %>%
tabyl(design)
## `summarise()` regrouping output by 'study' (override with `.groups` argument)
library(readr)
write_csv(sbr_yld_design, "data/dat-yld.csv")
library(readr)
library(tidyverse)
rust_yld <- read_csv("data/dat-yld.csv")
##
## -- Column specification --------------------------------------------------------
## cols(
## study = col_double(),
## year = col_double(),
## location = col_character(),
## state = col_character(),
## n_spray = col_double(),
## brand_name = col_character(),
## mean_sev = col_double(),
## mean_yld = col_double(),
## v_sev = col_double(),
## v_yld = col_double(),
## yld_check = col_double(),
## v_yld_check = col_double(),
## sev_check = col_double(),
## v_sev_check = col_double(),
## vi_yld = col_double(),
## n2 = col_double(),
## n3 = col_double(),
## design = col_double()
## )
rust_yld %>%
group_by(study)
length(unique(rust_yld$study))
## [1] 175
rust_yld %>%
group_by(study, n2) %>%
summarise() %>%
tabyl(n2)
## `summarise()` regrouping output by 'study' (override with `.groups` argument)
yld_year = rust_yld %>%
filter(brand_name == "AACHECK") %>%
filter(year == 2020)
summary(yld_year$yld_check)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1487 2450 2890 2867 3301 4023
rust_yld %>%
tabyl(brand_name, year)
rust_yld %>%
tabyl(brand_name)