Data import

Histogramas

## Log of the Effect-sizes
rust1 <- rust1 %>%
  mutate(
    log_sev = log(sev),
    log_yld = log(yld))


hist_log_sev <- ggplot(rust1, aes(log_sev)) + 
  geom_histogram(bin = 10, fill = "steelblue", color = "white") + 
  theme_minimal_hgrid() + 
  scale_y_continuous(breaks = c(0, 500, 1000, 1500), limits = c(0, 1500)) +
  xlab("log(SBR severity)")


hist_sev <- ggplot(rust1, aes(sev)) + 
  geom_histogram(bin = 10, fill = "steelblue", color = "white") + 
  theme_minimal_hgrid() +
  xlab("SBR Severity (%)")



hist_yld <- ggplot(rust1, aes(yld)) + 
  geom_histogram(bin = 10,fill = "steelblue", color = "white") + 
  theme_minimal_hgrid() +
  xlab("Yield (Kg/ha)")


library(cowplot)
hist_plot <- plot_grid(hist_sev, hist_log_sev, hist_yld, labels = c("A", "B", "C"), nrow = 3, align = "V")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
hist_plot

ggsave("Figures/histograms.png", width = 6, height = 9, dpi = 600)

Boxplots

Severity

library(tidyverse)
rust_sev <- read_csv("data/dat-sev.csv")
rust_sev <- rust_sev %>% 
mutate(region = case_when(
    state == "MT" ~ "NW",
    state == "BA" ~ "NW",
    state == "DF" ~ "NW",
    state == "MS" ~ "NW",
    state == "GO" ~ "NW",
    state == "TO" ~ "NW",
    state == "PR" ~ "SE",
    state == "MG" ~ "NW",
    state == "SP" ~ "SE",
    state == "RS" ~ "SE")) 
library(plyr)
rust_sev$brand_name <- revalue(rust_sev$brand_name, c("AACHECK" = "CHECK"))
detach("package:plyr", unload = TRUE)




rust_sev <- rust_sev  
rust_sev$brand_name <- factor(rust_sev$brand_name, levels = c("CHECK", "BIXF + TFLX + PROT", "PICO + BENZ", "PYRA + EPOX + FLUX", "AZOX + BENZ",  "TFLX + PROT","PICO + TEBU", "TFLX + CYPR", "PICO + CYPR"))
 

box_region_sev = rust_sev %>%
  filter(brand_name == "CHECK") %>%
  ggplot(aes(factor(region), sev_check)) +
  geom_jitter(width = 0.15, size = 2, color = "gray85", alpha = 1) +
  geom_boxplot(size = 1, outlier.shape = NA, fill = NA, color = "#E05313", width = 0.5) +
  theme_minimal_hgrid(font_size = 10)+
  labs(x = "Region", y = "SBR severity (%) in the CHECK") +
  scale_y_continuous(breaks = c(0,20,40,60,80,100), limits = c(0,100))+
  theme(axis.title.x = element_blank(),
        axis.text.x = element_blank(),
        axis.title.y = element_text(size=12, face = "bold"),
        panel.border = element_rect(color = "gray60", size=1)
        # axis.text.y = element_text(size=12),
        # axis.title.y = element_text(size=14, face = "bold")
        )
box_region_sev

box_sev <- ggplot(rust_sev, aes(brand_name, mean_sev)) +
  geom_jitter(width = 0.15, size = 2, color = "gray85", alpha = 1) +
  geom_boxplot(size = 1, outlier.shape = NA, fill = NA, color = "#E05313", width = 0.5) +
  theme_minimal_hgrid(font_size = 10)+
  labs(x = "Fungicide", y = "SBR Severity (%)") +
  scale_y_continuous(breaks = c(0,20,40,60,80,100), limits = c(0,100))+
  theme(axis.title.x = element_blank(),
        axis.text.x = element_blank(),
        axis.title.y = element_text(size=12, face = "bold"),
        panel.border = element_rect(color = "gray60", size=1)
        # axis.text.y = element_text(size=12),
        # axis.title.y = element_text(size=14, face = "bold")
        )
box_sev

sev_year <- rust_sev %>%
  filter(brand_name == "CHECK") %>%
  ggplot(aes(factor(year), sev_check)) +
  geom_jitter(width = 0.15, size = 2, color = "gray85", alpha = 1) +
  geom_boxplot(size = 1, outlier.shape = NA, fill = NA, color = "#E05313", width = 0.5) +
  theme_minimal_hgrid(font_size = 10)+
  labs(x = "Harvest Season", y = "") +
  scale_y_continuous(breaks = c(0,20,40,60,80,100), limits = c(0,100))+
  theme(axis.title.x = element_blank(),
        axis.text.x = element_blank(),
        axis.text.y = element_text(color = NA, size = 4),
        axis.title.y = element_blank(),
        panel.border = element_rect(color = "gray60", size=1)
        # axis.text.y = element_text(size=12),
        # axis.title.y = element_text(size=14, face = "bold")
        )
sev_year

Yield

library(tidyverse)
rust_yld <- read_csv("data/dat-yld.csv")
rust_yld = rust_yld %>% 
mutate(region = case_when(
    state == "MT" ~ "NW",
    state == "BA" ~ "NW",
    state == "DF" ~ "NW",
    state == "MS" ~ "NW",
    state == "GO" ~ "NW",
    state == "TO" ~ "NW",
    state == "PR" ~ "SE",
    state == "MG" ~ "NW",
    state == "SP" ~ "SE",
    state == "RS" ~ "SE")) 
library(plyr)
rust_yld$brand_name <- revalue(rust_yld$brand_name, c("AACHECK" = "CHECK"))
detach("package:plyr", unload = TRUE)


rust_yld <- rust_yld  
rust_yld$brand_name <- factor(rust_yld$brand_name, levels = c("CHECK", "BIXF + TFLX + PROT", "PICO + BENZ", "PYRA + EPOX + FLUX", "AZOX + BENZ",  "TFLX + PROT","PICO + TEBU", "TFLX + CYPR", "PICO + CYPR"))

box_region_yld = rust_yld %>% 
 filter(brand_name == "CHECK") %>%
  ggplot(aes(factor(region), yld_check)) +
  geom_jitter(width = 0.15, size = 2, color = "gray85", alpha = 1) +
  geom_boxplot(size = 1, outlier.shape = NA, fill = NA, color = "#4D1C06", width = 0.5) +
  theme_minimal_hgrid(font_size = 10)+
  labs(x = "Region", y = "Yield (kg/ha) in the CHECK") +
  scale_y_continuous(breaks = c(0,1000,2000,3000,4000,5000), limits = c(0, 5000))+
  theme(axis.text.x = element_text(angle = 45, hjust = 1, size=12),
        axis.title.x = element_text(size=12, face = "bold"),
        axis.title.y = element_text(size=12, face = "bold"),
        panel.border = element_rect(color = "gray60", size=1)
        # axis.text.y = element_text(size=12),
        # axis.title = element_text(size=14, face = "bold")
         )
box_region_yld

box_yld <- ggplot(rust_yld, aes(brand_name, mean_yld)) +
  geom_jitter(width = 0.15, size = 2, color = "gray85", alpha = 1) +
  geom_boxplot(size = 1, outlier.shape = NA, fill = NA, color = "#4D1C06", width = 0.5) +
  theme_minimal_hgrid(font_size = 10)+
  labs(x = "Fungicide", y = "Yield (kg/ha)") +
  scale_y_continuous(breaks = c(0,1000,2000,3000,4000,5000), limits = c(0, 5000))+
  theme(axis.text.x = element_text(angle = 45, hjust = 1, size=12),
        axis.title.x = element_text(size=12, face = "bold"),
        axis.title.y = element_text(size=12, face = "bold"),
        panel.border = element_rect(color = "gray60", size=1)
        # axis.text.y = element_text(size=12),
        # axis.title = element_text(size=14, face = "bold")
        )
box_yld

yld_year <- rust_yld %>%
  filter(brand_name == "CHECK") %>%
  ggplot(aes(factor(year), yld_check)) +
  geom_jitter(width = 0.15, size = 2, color = "gray85", alpha = 1) +
  geom_boxplot(size = 1, outlier.shape = NA, fill = NA, color = "#4D1C06", width = 0.5) +
  theme_minimal_hgrid(font_size = 10)+
  labs(x = "Harvest Season", y = "") +
  scale_y_continuous(breaks = c(0,1000,2000,3000,4000,5000), limits = c(0, 5000))+
  theme(axis.text.x = element_text(angle = 45, hjust = 1, size=12),
        axis.title.x = element_text(size=12, face = "bold"),
        axis.title.y = element_blank(),
        axis.text.y  = element_text(color = NA,size = 4),
        panel.border = element_rect(color = "gray60", size=1)
        # axis.text.y = element_text(size=12),
        # axis.title = element_text(size=14, face = "bold")
        )
yld_year

library(patchwork)
## 
## Attaching package: 'patchwork'
## The following object is masked from 'package:cowplot':
## 
##     align_plots
box_sev + box_region_sev + sev_year + 
  box_yld+ box_region_yld + yld_year + 
  plot_layout(heights = c(1, 1),
              widths = c(1,.3,.7))+
  plot_annotation(tag_levels = 'A') &
  theme(panel.border = element_blank())

ggsave("Figures/Combo_BOX.png", width = 10, height = 8, dpi = 600)

Severity x Yield

library(cowplot)
library(ggrepel)
library(tidyverse)
library(here)
## here() starts at C:/Users/User/Google Drive/Jhonatan-Barro/Dados-ferrugem-soja-CAF/paper-NMA-2015-2020/R-codes
yld = read_excel(here("data","yld_kg.xlsx")) 
sev = read_excel(here("data","efficacy_sev.xlsx")) 

gain = full_join(sev, yld, by = "fungicide")
  
 
gain$fungicide <- factor(gain$fungicide, levels = c("BIXF + TFLX + PROT", "PICO + BENZ", "PYRA + EPOX + FLUX", "AZOX + BENZ",  "TFLX + PROT","PICO + TEBU", "TFLX + CYPR", "PICO + CYPR"))

gain %>% 
  ggplot(aes(efficacy, yld)) + 
  geom_errorbar(aes(ymin = yld_lower, ymax = yld_upper, color = fungicide), alpha = 0.8, width=0, size= 0.8)+
  geom_errorbarh(aes(xmin = efficacy_lw, xmax = efficacy_up, color = fungicide), alpha = 0.8, height= 0, size= 0.8)+
  geom_point(aes(efficacy, yld, color = fungicide), size = 3)+
  scale_y_continuous(breaks=c(400,600,800,1000,1200), limits=c(400,1200))+
  scale_x_continuous(breaks=c(50,60,70,80), limits=c(50,80))+
  theme_minimal_grid()+
  scale_color_calc()+
  labs(y = "Yield response (kg/ha)", x = "Efficacy (%)", color = "Fungicide")+
  theme(axis.text=element_text(size=12), 
        axis.title=element_text(size=14, face = "bold"),
        legend.position = "right",
        legend.title.align = 0.5,
        legend.title = element_text(size=12, face = "bold"))

ggsave("Figures/sev_yld.png", width = 8, height = 5, dpi = 600)

Mod Year

Efficacy

library(here)
dec_efficacy = read_excel("data/predicted_efficacy.xlsx")




library(tidyverse)
rust_sev <- read_csv("data/dat-sev.csv")
## 
## -- Column specification --------------------------------------------------------
## cols(
##   study = col_double(),
##   year = col_double(),
##   location = col_character(),
##   state = col_character(),
##   n_spray = col_double(),
##   brand_name = col_character(),
##   mean_sev = col_double(),
##   mean_yld = col_double(),
##   v_sev = col_double(),
##   v_yld = col_double(),
##   yld_check = col_double(),
##   v_yld_check = col_double(),
##   sev_check = col_double(),
##   v_sev_check = col_double(),
##   log_sev = col_double(),
##   vi_sev = col_double(),
##   n2 = col_double(),
##   n3 = col_double(),
##   design = col_double()
## )
sbr_effic <- rust_sev %>%
  mutate(efficacy = (1-(mean_sev/sev_check))) %>% 
  mutate(efficacy1 = efficacy*100) %>% 
  filter(brand_name!= "AACHECK")  
  

sbr_effic <- sbr_effic %>% 
mutate(region = case_when(
    state == "MT" ~ "North",
    state == "BA" ~ "North",
    state == "DF" ~ "North",
    state == "MS" ~ "North",
    state == "GO" ~ "North",
    state == "TO" ~ "North",
    state == "PR" ~ "South",
    state == "MG" ~ "North",
    state == "SP" ~ "South",
    state == "RS" ~ "South")) 

dec_efficacy %>% 
  mutate(brand_name = factor(brand_name, levels = c("BIXF + TFLX + PROT", "PICO + BENZ", "PYRA + EPOX + FLUX", "AZOX + BENZ",  "TFLX + PROT","PICO + TEBU", "TFLX + CYPR", "PICO + CYPR"))) %>%
  ggplot()+
  geom_jitter(data = sbr_effic, aes(year, efficacy*100, size = vi_sev, color = region),  alpha= 0.13, width = .2)+
  geom_line(data = dec_efficacy, aes(year, mean_efficacy), size = 1.7, color = "#E05313")+
  geom_line(data = dec_efficacy, aes(year, CIL), linetype="dashed", size = 1, alpha = 1)+
  geom_line(data = dec_efficacy, aes(year, CIU), linetype="dashed", size = 1, alpha = 1)+
  theme_minimal_hgrid(font_size = 10)+
  scale_size_continuous(range = c(3,10), breaks = c(1,10,100))+
  scale_color_manual(values=c("steelblue", "#009628"),
                     name = "Region",
                     breaks=c("North", "South"),
                     labels=c("NW", "SE"))+
  guides(color = guide_legend(override.aes = list(size=2.5)))+
  theme(legend.position = "top",
        legend.justification = "top",
        legend.direction = "horizontal",
        legend.key.height = unit(1, "cm"),
        legend.title = element_text(size = 12, face = "bold"),
        legend.text = element_text(size = 12),
        panel.grid = element_blank(),
        axis.text.x = element_text(size = 10),
        axis.text.y = element_text(size = 10),
        axis.title.x = element_text(size=14, face = "bold"),
        axis.title.y = element_text(size=14, face = "bold"),
        strip.text = element_text(size = 12, color = "black"),
        strip.background = element_rect(colour="white", fill="white"),
        panel.border = element_rect(color = "gray60", size=1))+
  scale_x_continuous(breaks=c(2015, 2016, 2017, 2018, 2019, 2020), limits=c(2015,2020))+
  labs(y = "Efficacy (%)", x = "Crop Season", color = "Region", size = "Sampling Variance")+
  facet_wrap(~factor(brand_name), ncol = 2)+
  coord_cartesian(ylim=c(0,100))+
  labs(y = "Efficacy (%)", x = "Harvest Season", size = "Sampling Variance", color = "Region")
## Warning: Removed 124 rows containing missing values (geom_point).

ggsave("Figures/decline_efficacy.png", width = 8, height = 10, dpi = 600)
## Warning: Removed 124 rows containing missing values (geom_point).

Yield

library(cowplot)

dec_yld = read_excel("data/predicted_yield.xlsx")
rust_yld <- read_csv("data/dat-yld.csv")
## 
## -- Column specification --------------------------------------------------------
## cols(
##   study = col_double(),
##   year = col_double(),
##   location = col_character(),
##   state = col_character(),
##   n_spray = col_double(),
##   brand_name = col_character(),
##   mean_sev = col_double(),
##   mean_yld = col_double(),
##   v_sev = col_double(),
##   v_yld = col_double(),
##   yld_check = col_double(),
##   v_yld_check = col_double(),
##   sev_check = col_double(),
##   v_sev_check = col_double(),
##   vi_yld = col_double(),
##   n2 = col_double(),
##   n3 = col_double(),
##   design = col_double()
## )
yld_gain <- rust_yld %>%
  mutate(gain = mean_yld - yld_check) %>% 
  filter(brand_name!= "AACHECK")  
  

yld_gain <- yld_gain %>% 
mutate(region = case_when(
    state == "MT" ~ "North",
    state == "BA" ~ "North",
    state == "DF" ~ "North",
    state == "MS" ~ "North",
    state == "GO" ~ "North",
    state == "TO" ~ "North",
    state == "PR" ~ "South",
    state == "MG" ~ "North",
    state == "SP" ~ "South",
    state == "RS" ~ "South"))


dec_yld %>% 
  mutate(brand_name = factor(brand_name, levels = c("BIXF + TFLX + PROT", "PICO + BENZ", "PYRA + EPOX + FLUX", "AZOX + BENZ",  "TFLX + PROT","PICO + TEBU", "TFLX + CYPR", "PICO + CYPR"))) %>%
  ggplot()+
  geom_jitter(data = yld_gain, aes(year, gain, size = vi_yld, color = region), alpha= 0.13, width = 0.2)+
  geom_line(data = dec_yld, aes(year, mean_gain), size = 1.7, color = "#4D1C06")+
  geom_line(data = dec_yld, aes(year, CIL), linetype="dashed", size = 1, alpha = 1)+
  geom_line(data = dec_yld, aes(year, CIU), linetype="dashed", size =1, alpha = 1)+
  theme_minimal_hgrid(font_size = 10)+
  scale_color_manual(values=c("steelblue", "#009628"),
                     name = "Region",
                     breaks=c("North", "South"),
                     labels=c("NW", "SE"))+
  scale_size_continuous(range = c(.01,5))+
  scale_size_continuous(range = c(.5,8), breaks = c(600,6000,60000))+
  guides(color = guide_legend(override.aes = list(size=2.5)))+
  theme(legend.position = "top",
        legend.justification = "top",
        legend.direction = "horizontal",
        legend.key.height = unit(1, "cm"),
        legend.title = element_text(size = 12, face = "bold"),
        legend.text = element_text(size = 12),
        panel.grid = element_blank(),
        axis.text.x = element_text(size = 10),
        axis.text.y = element_text(size = 10),
        axis.title.x = element_text(size=14, face = "bold"),
        axis.title.y = element_text(size=14, face = "bold"),
        strip.text = element_text(size = 12, color = "black"),
        strip.background = element_rect(colour="white", fill="white"),
        panel.border = element_rect(color = "gray60", size=1))+
  scale_x_continuous(breaks=c(2015, 2016, 2017, 2018, 2019, 2020), limits=c(2015,2020))+
  labs(y = "Yield response (kg/ha)", x = "Harvest Season",  color = "Region", size = "Sampling Variance")+
  ylim(0,3000)+
  facet_wrap(~factor(brand_name), ncol = 2)
## Scale for 'size' is already present. Adding another scale for 'size', which
## will replace the existing scale.
## Warning: Removed 137 rows containing missing values (geom_point).

ggsave("Figures/decline_yield.png", width = 8, height = 10, dpi = 600)
## Warning: Removed 137 rows containing missing values (geom_point).

Mod Region

library(cowplot)
library(tidyverse)
library(here)

yld_region = read_excel(here("data","yld_region.xlsx")) 
names(yld_region) = c("fungicide", "region", "yld", "yld_lw", "yld_upp")
yld_overall = read_excel(here("data","yld_kg.xlsx")) %>% 
  mutate(region = rep("Overall", length(fungicide)))
names(yld_overall) = c("yld",  "yld_lw", "yld_upp", "fungicide", "region")
yld = rbind(yld_overall, yld_region)

efficacy_region = read_excel(here("data","eff_region.xlsx"))
names(efficacy_region) = c("fungicide", "region", "efficacy", "eff_lw", "eff_upp")
sev = read_excel(here("data","efficacy_sev.xlsx")) %>% 
  mutate(region = rep("Overall", length(fungicide)))
names(sev) = c("efficacy",  "eff_lw", "eff_upp", "fungicide", "region")
efficacy = rbind(sev, efficacy_region)

gain1 = left_join(efficacy, yld) %>% 
  filter(region != "Overall") %>% 
  mutate(sig = case_when(
    fungicide == "BIXF + TFLX + PROT" ~ "sig",
    fungicide == "PICO + CYPR" ~ "sig",
    fungicide == "PICO + TEBU" ~ "sig",
    fungicide == "TFLX + CYPR" ~ "sig",
    fungicide == "TFLX + PROT" ~ "sig",
    fungicide == "AZOX + BENZ" ~ "ns",
    fungicide == "PICO + BENZ" ~ "ns",
    fungicide == "PYRA + EPOX + FLUX" ~ "ns",
  ))
## Joining, by = c("fungicide", "region")
g1 = gain1 %>%
 mutate(fungicide = factor(fungicide, levels = c("PICO + CYPR", "TFLX + CYPR", "PICO + TEBU",  "TFLX + PROT", "AZOX + BENZ", "PYRA + EPOX + FLUX", "PICO + BENZ", "BIXF + TFLX + PROT"))) %>%
  mutate(region = factor(region, levels = c("South","North"))) %>%
  ggplot(aes(fungicide, efficacy)) +
  geom_errorbar(aes(ymin = eff_lw,ymax = eff_upp, color = region, shape = sig), width = 0, size = 1,  position = position_dodge(0.3))+
  labs(y = "Efficacy (%)", x = "Fungicide",  color = "Region", shape = "")+
  scale_y_continuous(breaks=c(50,60,70,80,90,100))+
  geom_point(aes(fungicide, efficacy, color = region),  position = position_dodge(0.3), size = 3.5) +
  geom_point(aes(x =fungicide, y = 90,  shape = sig), size = 6, color = "red")+
  theme_minimal_grid()+
  theme(axis.text=element_text(size=10),
        legend.justification = "center",
        axis.title=element_text(size=10, face = "bold"),
        legend.position = "top",
        panel.border = element_rect(color = "gray60", size=1),
        legend.title = element_text(size = 10, face = "bold"),
        legend.text = element_text(size = 10, face = "italic"))+
  scale_color_manual(values=c("steelblue", "#009628"),
                     name = "Region",
                     breaks=c("North",  "South"),
                     labels=c("NW", "SE"))+
  # scale_shape_manual(values = c(1,16),
  #                   labels=c("P > 0.05",  "P \u2264 0.05"))+
  scale_shape_manual(values = c(" ","*"),
                    labels=c("",  "P \u2264 0.05"))+
  coord_fixed()+
  coord_flip()
## Warning: Ignoring unknown aesthetics: shape
## Coordinate system already present. Adding new coordinate system, which will replace the existing one.
gain2 = left_join(efficacy, yld) %>% 
  filter(region != "Overall") %>% 
  mutate(sig = case_when(
    fungicide == "BIXF + TFLX + PROT" ~ "ns",
    fungicide == "PICO + CYPR" ~ "sig",
    fungicide == "PICO + TEBU" ~ "sig",
    fungicide == "TFLX + CYPR" ~ "sig",
    fungicide == "TFLX + PROT" ~ "sig",
    fungicide == "AZOX + BENZ" ~ "ns",
    fungicide == "PICO + BENZ" ~ "ns",
    fungicide == "PYRA + EPOX + FLUX" ~ "ns",
  ))
## Joining, by = c("fungicide", "region")
g2 = gain2 %>%
  mutate(fungicide = factor(fungicide, levels = c("PICO + CYPR", "TFLX + CYPR", "PICO + TEBU",  "TFLX + PROT", "AZOX + BENZ", "PYRA + EPOX + FLUX", "PICO + BENZ", "BIXF + TFLX + PROT"))) %>%
  mutate(region = factor(region, levels = c("South","North"))) %>%
  ggplot(aes(fungicide, yld)) +
  geom_errorbar(aes(ymin = yld_lw, ymax = yld_upp, color = region, shape = sig), width = 0, size = 1,  position = position_dodge(0.3))+
  labs(y = "Yield response (kg/ha)", x = "Fungicide",  color = "Region", shape = "")+
  scale_y_continuous(breaks=c(500,750,1000,1250))+
  geom_point(aes(fungicide, yld, color = region),  position = position_dodge(0.3), size = 3.5) +
  geom_point(aes(x =fungicide, y = 1400,  shape = sig), size = 6, color = "red")+
  theme_minimal_grid()+
  theme(axis.title.x= element_text(size=10, face = "bold"),
        axis.text.x=element_text(size=10),
        axis.title.y = element_blank(),
        axis.text.y = element_blank(),
        panel.border = element_rect(color = "gray60", size=1),
        legend.position = "top",
        legend.title = element_text(size = 10, face = "bold"),
        legend.text = element_text(size = 10, face = "italic"))+
  scale_color_manual(values=c("steelblue", "#009628"),
                     name = "Region",
                     breaks=c("North",  "South"),
                     labels=c("NW",  "SE"))+
  # scale_shape_manual(values = c(1,16),
  #                   labels=c("P > 0.05",  "P \u2264 0.05"))+
  scale_shape_manual(values = c(" ","*"),
                    labels=c("",  "P \u2264 0.05"))+
  coord_fixed()+
  coord_flip()
## Warning: Ignoring unknown aesthetics: shape
## Coordinate system already present. Adding new coordinate system, which will replace the existing one.
library(patchwork)
g1 + g2 + plot_layout(guides = "collect") & theme(legend.position = "top")

ggsave("Figures/region.png", height=5, width=8, dpi = 600)

Map

library(gsheet)
library(janitor)
## 
## Attaching package: 'janitor'
## The following objects are masked from 'package:stats':
## 
##     chisq.test, fisher.test
coord <- gsheet2tbl("https://docs.google.com/spreadsheets/d/1Xx_gK6ERLLhQGIrOPB_ZYs9LoHTmsv030s30Dc_TPzg/edit#gid=1130774788", sheetid = "map")

library(tidyverse)
rust_sev <- read_csv("data/dat-sev.csv")
## 
## -- Column specification --------------------------------------------------------
## cols(
##   study = col_double(),
##   year = col_double(),
##   location = col_character(),
##   state = col_character(),
##   n_spray = col_double(),
##   brand_name = col_character(),
##   mean_sev = col_double(),
##   mean_yld = col_double(),
##   v_sev = col_double(),
##   v_yld = col_double(),
##   yld_check = col_double(),
##   v_yld_check = col_double(),
##   sev_check = col_double(),
##   v_sev_check = col_double(),
##   log_sev = col_double(),
##   vi_sev = col_double(),
##   n2 = col_double(),
##   n3 = col_double(),
##   design = col_double()
## )
sbr_effic <- rust_sev %>%
  group_by(location, state, brand_name) %>% 
  summarise(efficacy = (1-(mean_sev/sev_check))*100,
            vi_sev = mean(vi_sev)) %>% 
  group_by(location, state, brand_name) %>%
  summarise(efficacy = mean(efficacy),
            vi_sev = mean(vi_sev))
## `summarise()` regrouping output by 'location', 'state', 'brand_name' (override with `.groups` argument)
## `summarise()` regrouping output by 'location', 'state' (override with `.groups` argument)
rust_trial <- gsheet2tbl("https://docs.google.com/spreadsheets/d/1Xx_gK6ERLLhQGIrOPB_ZYs9LoHTmsv030s30Dc_TPzg/edit#gid=287066174", sheetid = "2015-2020")
## Warning: 74 parsing failures.
##  row col expected actual                                                                                                                   file
## 6539 sev a double      . 'https://docs.google.com/spreadsheets/export?id=1Xx_gK6ERLLhQGIrOPB_ZYs9LoHTmsv030s30Dc_TPzg&format=csv&gid=287066174'
## 6539 yld a double      . 'https://docs.google.com/spreadsheets/export?id=1Xx_gK6ERLLhQGIrOPB_ZYs9LoHTmsv030s30Dc_TPzg&format=csv&gid=287066174'
## 6540 sev a double      . 'https://docs.google.com/spreadsheets/export?id=1Xx_gK6ERLLhQGIrOPB_ZYs9LoHTmsv030s30Dc_TPzg&format=csv&gid=287066174'
## 6540 yld a double      . 'https://docs.google.com/spreadsheets/export?id=1Xx_gK6ERLLhQGIrOPB_ZYs9LoHTmsv030s30Dc_TPzg&format=csv&gid=287066174'
## 6541 sev a double      . 'https://docs.google.com/spreadsheets/export?id=1Xx_gK6ERLLhQGIrOPB_ZYs9LoHTmsv030s30Dc_TPzg&format=csv&gid=287066174'
## .... ... ........ ...... ......................................................................................................................
## See problems(...) for more details.
trial_n = rust_trial %>%
  group_by(study,location) %>% 
  summarise() %>%
  tabyl(location)
## `summarise()` regrouping output by 'study' (override with `.groups` argument)
trial_n = data.frame(trial_n) %>% 
  select(1,2)

sbr_effic = full_join(sbr_effic, trial_n, by = c("location"))

map = full_join(sbr_effic, coord, by = c("location", "state")) %>% 
  filter(efficacy > 0)
map
library(rnaturalearth)
library(ggplot2)
library(ggmap)
## Google's Terms of Service: https://cloud.google.com/maps-platform/terms/.
## Please cite ggmap if you use it! See citation("ggmap") for details.
## 
## Attaching package: 'ggmap'
## The following object is masked from 'package:cowplot':
## 
##     theme_nothing
library(ggspatial)
library(viridis)
## Loading required package: viridisLite
## 
## Attaching package: 'viridis'
## The following object is masked from 'package:scales':
## 
##     viridis_pal
SUL = ne_states(
  country = c("Argentina", "Uruguay", "Paraguay", "Colombia", "Bolivia"),
  returnclass = "sf")
br_sf <- ne_states(geounit = "brazil",
                   returnclass = "sf")

states <- filter(br_sf, 
                 name_pt == "Rio Grande do Sul"|
                 name_pt == "Paraná"|
                 name_pt == "São Paulo"|
                 name_pt == "Mato Grosso"|
                 name_pt == "Mato Grosso do Sul"|
                 name_pt == "Goiás"|
                 name_pt == "Tocantins"|
                 name_pt == "Bahia"|
                 name_pt == "Minas Gerais"|
                 name_pt == "Distrito Federal")

states = states %>% 
  mutate(id = case_when(
    name_pt == "Rio Grande do Sul" ~ "RS",
    name_pt == "Paraná" ~ "PR",
    name_pt == "São Paulo" ~ "SP",
    name_pt == "Mato Grosso" ~ "MT",
    name_pt == "Mato Grosso do Sul" ~ "MS",
    name_pt == "Goiás" ~ "GO",
    name_pt == "Tocantins" ~ "TO",
    name_pt == "Minas Gerais" ~ "MG",
    name_pt == "Distrito Federal" ~ "DF",
    name_pt == "Bahia" ~ "BA"))

map %>% 
  mutate(brand_name = factor(brand_name, levels = c("BIXF + TFLX + PROT", "PICO + BENZ", "PYRA + EPOX + FLUX", "AZOX + BENZ",  "TFLX + PROT","PICO + TEBU", "TFLX + CYPR", "PICO + CYPR"))) %>% 
ggplot()+
  geom_sf(data = SUL, fill = "gray95", color = "gray95") +
  geom_sf(data = br_sf, fill = "gray98", color= "gray60", size =0.2) +
  geom_sf(data = states, aes(x = longitude, y = latitude), fill = "white", color = "gray40", size = 0.2) +
  geom_text(data = states, aes(x = longitude, y = latitude,  label = id), size = 2.5, hjust = 0.5, color = "black", fontface = "bold")+
  geom_jitter(data = map, aes(x = long, y = lat, size = n, color = efficacy), alpha = 0.8) +
  #geom_point(data = map, aes(x = long, y = lat, size = vi_sev, color = efficacy), alpha = .5) +
  labs(x = "Longitude", y = "Latitude", color = "Efficacy", size = "Number of Trials") +
  scale_size_continuous(range = c(1,5), breaks = c(1,5,12))+
  #theme_bw()+
  theme_minimal_grid()+
  annotation_scale(location = "bl", width_hint = 0.2) +
  coord_sf(xlim = c(-60,-40), ylim = c(-32, -9), expand = FALSE)+
  scale_colour_viridis_b(option = "C", direction = 1)+
   # scale_color_gradient2(low = "red", mid ="black", high = "green", midpoint = 60)+
  theme(legend.position = c(0.7, 0.18),
        legend.direction = "vertical",
        legend.title.align = 0.5,
        legend.title = element_text(size = 10, face = "bold"),
        legend.text = element_text(size = 10),
        axis.text.x =  element_text(size = 6),
        axis.text.y = element_text(size = 6),
        axis.title.x = element_text(size=12, face = "bold"),
        axis.title.y = element_text(size=12, face = "bold"),
        strip.text = element_text(size = 10, color = "black"),
        panel.grid = element_blank(),
        panel.border = element_rect(color = "gray50", size=.2),
        panel.spacing.x = unit(1.5, "lines"),
        panel.background = element_rect(fill = "#d2eeff")
        )+
  facet_wrap(~factor(brand_name), ncol = 3)
## Scale on map varies by more than 10%, scale bar may be inaccurate
## Scale on map varies by more than 10%, scale bar may be inaccurate
## Scale on map varies by more than 10%, scale bar may be inaccurate
## Scale on map varies by more than 10%, scale bar may be inaccurate
## Scale on map varies by more than 10%, scale bar may be inaccurate
## Scale on map varies by more than 10%, scale bar may be inaccurate
## Scale on map varies by more than 10%, scale bar may be inaccurate
## Scale on map varies by more than 10%, scale bar may be inaccurate

# hist(map$vi_sev)

ggsave("Figures/map.png", height=10, width=8, dpi = 600)
## Scale on map varies by more than 10%, scale bar may be inaccurate
## Scale on map varies by more than 10%, scale bar may be inaccurate
## Scale on map varies by more than 10%, scale bar may be inaccurate
## Scale on map varies by more than 10%, scale bar may be inaccurate
## Scale on map varies by more than 10%, scale bar may be inaccurate
## Scale on map varies by more than 10%, scale bar may be inaccurate
## Scale on map varies by more than 10%, scale bar may be inaccurate
## Scale on map varies by more than 10%, scale bar may be inaccurate

Cover Figure

library(janitor)
library(gsheet)
coord <- gsheet2tbl("https://docs.google.com/spreadsheets/d/1Xx_gK6ERLLhQGIrOPB_ZYs9LoHTmsv030s30Dc_TPzg/edit#gid=1130774788", sheetid = "map")

library(tidyverse)
rust_sev <- read_csv("data/dat-sev.csv")
## 
## -- Column specification --------------------------------------------------------
## cols(
##   study = col_double(),
##   year = col_double(),
##   location = col_character(),
##   state = col_character(),
##   n_spray = col_double(),
##   brand_name = col_character(),
##   mean_sev = col_double(),
##   mean_yld = col_double(),
##   v_sev = col_double(),
##   v_yld = col_double(),
##   yld_check = col_double(),
##   v_yld_check = col_double(),
##   sev_check = col_double(),
##   v_sev_check = col_double(),
##   log_sev = col_double(),
##   vi_sev = col_double(),
##   n2 = col_double(),
##   n3 = col_double(),
##   design = col_double()
## )
rust_trial <- gsheet2tbl("https://docs.google.com/spreadsheets/d/1Xx_gK6ERLLhQGIrOPB_ZYs9LoHTmsv030s30Dc_TPzg/edit#gid=287066174", sheetid = "2015-2020")
trial_n = rust_trial %>%
  group_by(study,location) %>% 
  summarise() %>%
  tabyl(location)
## `summarise()` regrouping output by 'study' (override with `.groups` argument)
trial_n = data.frame(trial_n) %>% 
  select(1,2)

map2 = full_join(coord, trial_n, by = c("location"))

map2
library(rnaturalearth)
library(ggplot2)
library(ggmap)
library(ggspatial)
library(viridis)

SUL = ne_states(
  country = c("Argentina", "Uruguay", "Paraguay", "Colombia", "Bolivia"),
  returnclass = "sf")
br_sf <- ne_states(geounit = "brazil",
                   returnclass = "sf")

states <- filter(br_sf, 
                 name_pt == "Rio Grande do Sul"|
                 name_pt == "Paraná"|
                 name_pt == "São Paulo"|
                 name_pt == "Mato Grosso"|
                 name_pt == "Mato Grosso do Sul"|
                 name_pt == "Goiás"|
                 name_pt == "Tocantins"|
                 name_pt == "Bahia"|
                 name_pt == "Minas Gerais"|
                 name_pt == "Distrito Federal")

states = states %>% 
  mutate(id = case_when(
    name_pt == "Rio Grande do Sul" ~ "RS",
    name_pt == "Paraná" ~ "PR",
    name_pt == "São Paulo" ~ "SP",
    name_pt == "Mato Grosso" ~ "MT",
    name_pt == "Mato Grosso do Sul" ~ "MS",
    name_pt == "Goiás" ~ "GO",
    name_pt == "Tocantins" ~ "TO",
    name_pt == "Minas Gerais" ~ "MG",
    name_pt == "Distrito Federal" ~ "DF",
    name_pt == "Bahia" ~ "BA"))

map2 %>% 
ggplot()+
  geom_sf(data = SUL, fill = "gray95", color = "gray95") +
  geom_sf(data = br_sf, fill = "gray98", color= "gray60", size =0.2) +
  geom_sf(data = states, aes(x = longitude, y = latitude), fill = "white", color = "gray40", size = 0.2) +
  geom_text(data = states, aes(x = longitude, y = latitude,  label = id), size = 2.5, hjust = 0.5, color = "black", fontface = "bold")+
  geom_jitter(data = map2, aes(x = long, y = lat, size = n), color = "red" , alpha = .6) +
  labs(x = "Longitude", y = "Latitude", size = "Number of Trials") +
  scale_size_continuous(range = c(1,5), breaks = c(1,5,12))+
  theme_minimal_grid()+
  annotation_scale(location = "bl", width_hint = 0.2) +
  coord_sf(xlim = c(-60,-40), ylim = c(-32, -6), expand = FALSE)+
  theme(legend.position = "bottom",
        legend.justification = "center",
        legend.title.align = 0.5,
        legend.title = element_text(size = 10, face = "bold"),
        legend.text = element_text(size = 10),
        axis.text.x =  element_text(size = 6),
        axis.text.y = element_text(size = 6),
        axis.title.x = element_text(size=12, face = "bold"),
        axis.title.y = element_text(size=12, face = "bold"),
        panel.grid = element_blank(),
        panel.border = element_rect(color = "gray50", size=.2),
        panel.spacing.x = unit(1.5, "lines"),
        panel.background = element_rect(fill = "#d2eeff")
        )
## Scale on map varies by more than 10%, scale bar may be inaccurate

ggsave("Figures/cover_map.png", height=6, width=5, dpi = 600)
## Scale on map varies by more than 10%, scale bar may be inaccurate
Copyright 2017 Emerson Del Ponte